• Informatique / Bureautique / Big data / Cybersécurité

Business Intelligence (2) - Visualisation et Valorisation

Business Intelligence (2) - Visualisation et Valorisation
Unité d'enseignement

Détails

Infos générales

Code
NFE212

Présentation

Objectifs

Cette UE (NFE212) est normalement la suite de l’UE NFE211 « Business Intelligence (1) – Data Warehouse ».  Le NFE211 donne les compétences pour élaborer une chaine décisionnelle fondée sur un Data Warehouse, et focalise sur la partie alimentation du Data Warehouse.  Le NFE212 focalise sur la partie exploitation des données du Data Warehouse. Ainsi l’auditeur acquière  une maitrise complète du processus, tant du point de vue gestion des données que du point de vue analyse des données.

Mais le NFE212 peut aussi bien être suivi sans avoir fait le NFE211, il donne dans ce cas des compétences sur l’exploitation des données massives (Data Science).

L’objectif de cette UE est de voir les deux sortes d’approches permettent l’analyse des données à des fins décisionnelles :

  • Les outils descriptifs, tels les outils de reporting OLAP et les outils de visualisation, qui permettent au décideur d’avoir une vision synthétique ou dynamiquement plus détaillée par un système de zoom ;
  • L’analyse explicative et prédictive, qui fait largement appel à l’intelligence artificielle. Les données sont analysées et intelligemment classées ou transformées en modèles de prédiction.

Intitulé officiel

Business Intelligence (2) - Visualisation et Valorisation

Conditions d'accès

Pré-requis

Formation(s) requise(s)

Aucun prérequis.

Programme

Contenu de la formation

Visualisation des données structurées ou massives

  • Langages d’interrogation MDX et SQL OLAP
  • Outils de reporting OLAP
  • Outils de visualization (Dataviz)

Valorisation des données, intelligence prédictive

  • Fouille de données (Data Mining)
  • Fouille de textes (Text Mining)
  • Classification (Clustering), regression linéaire (Linear Regression)
  • Analyse prédictive (Predictive Analysis)
  • Apprentissage supervisé ou non supervisé (Machine learning)
  • Apprentissage profond et réseaux de neurones (Deep Learning and Neural Networks)
  • Data science avec R et R-Studio

 

Unités d'enseignement

  • Business Intelligence (2) - Visualisation et Valorisation
    À distance / Partiellement à distance Février à Juin 50 heures 6 crédits

Organisation

Durée et organisation

L'année est organisée en 2 semestres : semestre 1 (S1) d'octobre à février/mars et semestre 2 (S2) de février/mars à juin.
 

Méthodes mobilisées

Pédagogie qui combine apports académiques, études de cas basées sur des pratiques professionnelles et expérience des élèves.
Équipe pédagogique constituée pour partie de professionnels. Un espace numérique de formation (ENF) est utilisé tout au long du cursus.
 

Modalités d'évaluation

Chaque unité (UE/US, UA) fait l'objet d'une évaluation organisée en accord avec l'Établissement public (certificateur) dans le cadre d'un règlement national des examens.
 

Accessibilité public en situation de handicap

Nos formations sont accessibles aux publics en situation de handicap. Un référent Cnam est dédié à l'accompagnement de toute personne en situation de handicap. Pour contacter le référent : handi@cnam-paysdelaloire.fr

Modalités d'inscription

Comment s'inscrire ?

Choisissez votre semestre et cliquez sur "Ajouter à ma sélection".
 

Modalités et délais d'accès

Les inscriptions se déroulent dès le mois de mai pour les formations qui débutent en octobre (semestre 1) et dès novembre pour les formations qui débutent en février/mars (semestre 2).